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The inhomogeneous Hubbard model is investigated in the framework of lattice density-functional theory
�LDFT� by considering the single-particle density matrix �ij with respect to the lattice sites as the basic
variable of the many-body problem. The domain of representability of �ij is determined for charge-density
wave states on finite bipartite lattices. Levy’s constrained search of the interaction-energy functional W��ij� is
numerically solved by applying the Lanczos method to an effective Hubbard-type model. The exact functional
dependence of W��ij� is analyzed by varying systematically the charge transfer �n=�22−�11, the degree of
electron delocalization g12 between the sublattices, the number of sites Na, and the band filling n= ��11

+�22� /2=Ne /Na. For each �n the properties of W are discussed in the limits of weak ��12��12
0 � and strong

��12��12
� � electronic correlations, as well as in the crossover region ��12

� ��12��12
0 �. It is shown that W

follows quite closely a simple scaling behavior as a function of �n and g12= ��12−�12
� � / ��12

0 −�12
� �. The very

good transferability of W��n ,g12� for different Na, n and lattice structure opens new possibilities of applying
LDFT to inhomogeneous many-body models.
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I. INTRODUCTION

The density-functional approach to the inhomogeneous
electron gas has been the subject of remarkable advance-
ments since its original formulation by Hohenberg and
Kohn.1 After formal developments, extensions, and uncount-
able successful applications to a wide variety of problems,
the theory has steadily grown into the most efficient method
of determining electronic properties of matter from first
principles.2,3 In practice the calculations are, generally, based
on the Kohn-Sham �KS� scheme which implements the
variational principle in terms of the electronic density ��r� by
reducing the correlated many-body problem to the solution
of a set of self-consistent single-particle equations.4 While
this transformation is formally exact, the actual computations
always involve approximations to the interaction-energy
functional W��� that condition the quality of the final results.
The most extensively used forms for W��� are the local den-
sity approximation �LDA�,4 its spin-polarized version or lo-
cal spin-density approximation �LSDA�,5 and the gradient-
corrected extensions or generalized gradient approximations
�GGAs�,6 which were originally derived from exact results
for the homogeneous electron gas. Despite their extraordi-
nary success in the most diverse areas, the LDA- and GGA-
based approaches fail systematically in accounting for strong
electron-correlation effects as observed, for example, in Mott
insulators, heavy-fermion materials, or high-Tc
superconductors.7,8 Explaining these phenomena from first
principles constitutes one of the major current challenges in
condensed-matter theory.

Strongly correlated systems are usually described in the
framework of lattice Hamiltonians such as Anderson,9

Hubbard,10 Pariser-Parr-Pople,11 and related models, which
focus on the most relevant electron dynamics at low ener-
gies. A detailed understanding of strong electron-correlation
effects remains a very difficult task even if advantage is
taken from the model simplifications. Exact results are rare

or numerically very demanding. Therefore, a variety of
elaborate many-body techniques has been specifically devel-
oped in order to study this problem. Being in principle an
exact universally applicable theory, the limitations of
density-functional theory �DFT� must be ascribed to the ap-
proximations used for the exchange and correlation energies
and not to the underlying formalism. It is, therefore, impor-
tant to extend the scope of DFT to investigations of many-
body lattice Hamiltonians. Besides the theoretical interest of
the model physics, such developments are very attractive
since they provide a real alternative to the LSDA and related
gradient-corrected methods. They open new insights into the
properties of W, which should also be relevant for applica-
tions to increasingly realistic Hamiltonians or even first-
principles calculations.

In past years a number of investigations have been per-
formed by applying the concepts of DFT to lattice models.
The studied problems include the determination of band gaps
in semiconductors,12 the role of off-diagonal elements of the
density matrix and the noninteracting v representability in
strongly correlated systems,13 the development of energy
functionals of the density matrix with applications to Hub-
bard and Anderson models,14 studies based on the exact so-
lution of the one-dimensional �1D� Hubbard model,15 and
most recently investigations of time-dependent effects.16 The
background of the present investigations is given by previous
developments of lattice density-functional theory �LDFT� of
many-body models and its applications to the Hubbard
Hamiltonian in different dimensions.17–20 In this approach
the basic variable of the many-body problem is the density
matrix �ij, where i and j refer to the lattice sites and the
interaction energy W is regarded as a functional of �ij. Exact
numerical results have been obtained for W��ij� of the Hub-
bard model on various periodic lattices having �ij =�12 for
first nearest neighbors �NNs�.17 On this basis, a simple gen-
eral approximation to W��12� has been derived which incor-
porates the scaling properties of W, its analytical dimer ex-
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pression, and known limits. Several electronic properties of
1D, two-dimensional �2D�, and three-dimensional �3D� Hub-
bard models have been subsequently obtained in good agree-
ment with available analytical Lanczos or Monte Carlo re-
sults. These include in particular the ground-state kinetic and
correlation energies, charge-excitation gaps,18 dimerization
energies,19 and charge susceptibilities.20 LDFT appears,
therefore, as an efficient method of determining the elec-
tronic properties of many-body lattice models.

A common feature of previous LDFT investigations is the
restriction to systems showing a uniform distribution of the
ground-state electron density. This allows one to assume that
�ii is independent of i and to ignore their contribution to the
functional dependence of W, except for the dependence on
band filling. Although lattice models are based on localized
orbitals and thus provide a real alternative to the electron gas
approach, it is also true that the actual breakthrough of the
Hohenberg-Kohn-Sham theory is its unique ability to cope
with inhomogeneous ��r�.1–4 One would, therefore, like to
extend LDFT in order to understand the properties of W��ij�
in the presence of inhomogeneous charge distributions. It is
the purpose of this paper to investigate the Hubbard Hamil-
tonian on binary 1D lattices and to determine the exact de-
pendence of W on the degree of charge transfer and electron
delocalization, as obtained from Levy’s constrained-search
formulation and Lanczos diagonalization method.21,22

The remainder of the paper is organized as follows. In
Sec. II the general background on LDFT is briefly recalled
by pointing out the extensions involved in inhomogeneous
models. Section III describes the numerical procedure used
for calculating the interaction-energy functional W��ij�. In
Sec. IV the domain of representability of �ij is determined in
the presence of charge-density waves �CDWs�. Density ma-
trices derived from the ground state of the Hubbard model
�i.e., pure-state v representable �ij� as well as from more
general N-particle states �i.e., N representable �ij� are con-
sidered. In Sec. V the exact functional dependence of W��ij�
is determined as a function of the charge transfer between the
sublattices and of the degree of electron delocalization. The
scaling behavior and transferability properties are demon-
strated by varying systematically the number of lattice sites
Na and band filling n=Ne /Na. Finally, Sec. VI summarizes
the main conclusions and points out some relevant future
extensions.

II. DENSITY-FUNCTIONAL THEORY OF THE
INHOMOGENEOUS HUBBARD MODEL

In order to be explicit we focus on the inhomogeneous
Hubbard model which is expected to capture the main inter-
play between electronic correlations and charge-density re-
distributions. The Hamiltonian is given by

Ĥ = �
i,�

�in̂i� + �
�i,j��

tijĉi�
† ĉj� + U�

i

n̂i↓n̂i↑, �1�

where �i denotes the site-dependent energy levels, tij is the
NN hopping integrals, and U is the on-site interaction.10 As
usual ĉi�

† �ĉi�� stands for the creation �annihilation� operator
for an electron with spin � at site i �n̂i�= ĉi�

† ĉi��. The values

of �i and tij define the distribution of different elements in
the lattice, its dimensionality and structure, and the range of
the single-particle hybridizations �typically, tij =−t	0 for
NN ij�. They specify the system under study and thus play
the role given in conventional DFT to the external potential
vext�r��. Consequently, the basic variable in LDFT is the
single-particle density matrix �ij with respect to the sites i
and j. The situation is similar to the density-matrix func-
tional theory proposed by Gilbert for the study of nonlocal
pseudopotentials23 since the hoppings are nonlocal in the
sites.

The ground-state energy Egs and density matrix �ij
gs are

determined by minimizing the energy functional

E��� = EK��� + W��� �2�

with respect to �ij. E��� is defined for all density matrices
that derive from a physical state, i.e., that can be written as

�ij = �
�

�ij� = �
�

�
	ĉi�
† ĉj�	
� , �3�

where 	
� is an N-particle state. Such �ij are said to be
pure-state N representable. In some cases it is also useful to
distinguish the subset of so-called pure-state interacting
v-representable �ij or simply v-representable �ij, which are
those that can be derived from a ground state of Eq. �1�, i.e.,
�ij =�ij

gs for some values of �i, tij, and U. An extension of the
definition domain of E��� to ensemble-representable density
matrices

�ij = �
n

wn�
n	�
�

ĉi�
† ĉj�	
n� , �4�

with wn�0 and �nwn=1, is straightforward following the
work of Valone.24

The first term in Eq. �2� is given by

EK��� = �
i

�i�ii + �
i�j

tij�ij . �5�

It includes all single-particle contributions, namely, the
crystal-field energy and the kinetic energy associated with
the electron delocalization. Notice that both the diagonal and
off-diagonal parts are taken into account exactly.17

The second term in Eq. �2� is the interaction-energy func-
tional,

W��� = min

→�


U�
i

�
���	n̂i↑n̂i↓	
����� , �6�

which is given by Levy’s constrained-search minimization.21

Here the optimization runs over all N-particles states 	
����
that satisfy

�
���	�
�

ĉi�
† ĉj�	
���� = �ij �7�

for all i and j. Thus, W��� represents the minimum possible
value of the interaction energy that is compatible with a
given density matrix �ij, i.e., with a given charge distribution
and degree of electron delocalization. W is a universal func-
tional of �ij in the sense that it is independent of the external
parameters �i and tij, i.e., of the system under study. How-

MATTHIEU SAUBANÈRE AND G. M. PASTOR PHYSICAL REVIEW B 79, 235101 �2009�

235101-2



ever, it depends on the number of electrons Ne, on the inter-
nal structure of the many-body Hilbert space as given by Ne
and the number of orbitals or sites Na, and on the kind of the
many-body interactions in the present case Hubbard’s on-site
form.10,25 It is often convenient to express W in terms of the
Hartree-Fock energy EHF and the correlation energy Ec as
W=EHF+Ec. Notice that, in contrast to the KS approach, the
expression for the kinetic, crystal-field, and exchange ener-
gies are exact, so that Ec includes only the Coulomb corre-
lation contributions.

Finally, the variational principle for the ground-state den-
sity matrix �ij

gs follows from the relations21

Egs � E��� = EK��� + W��� �8�

for all pure-state N-representable �ij and

Egs = EK��gs� + W��gs� , �9�

where Egs= �
gs	Ĥ	
gs� refers to the ground-state energy.

III. COMPUTING THE EXACT INTERACTION-
ENERGY FUNCTIONAL

In order to determine W��� we seek the extremes of

F = U�
l

��
	n̂l↑n̂l↓	
�� + ��1 − �
	
��

+ �
i,j

ij��
	�
�

ĉi�
† ĉj�	
� − �ij �10�

with respect to 	
�. Lagrange multipliers � and ij have been
introduced to enforce the normalization of 	
� and the rep-
resentability of �ij. Derivation with respect to �
	, �, and ij
yields the eigenvalue equations

�
�ij�
�

ijĉi�
† ĉj�	
� + U�

i

n̂i↑n̂i↓	
� = �	
� �11�

and the auxiliary conditions �
 	
�=1 and �ij
= �
	��ĉi�

† ĉj�	
�. The Lagrange multipliers ij play the role
of energy levels �i= j� and hopping integrals �i� j� to be
chosen in order that 	
� yields the given �ij. The pure-state
representability of �ij ensures that there is always a solution.

In practice, one usually varies ij systematically in order
to scan the full domain of representability of �ij. For given
ij, the eigenstate 	
0� corresponding to the lowest eigen-
value of Eq. �11� yields the minimum W���. Any other 	
�
satisfying �ij = �
	��ĉi�

† ĉj�	
� would have higher � and
higher W since �ij and EK are fixed. These are the so-called
interacting v-representable �ij, which can be derived from a
ground state of Eq. �11� or �1�. They are the physically rel-
evant ones since they necessarily include the absolute mini-
mum �ij

gs of E���. However, one also finds pure-state repre-
sentable �ij, which correspond to excited states or to linear
combinations of eigenstates of Eq. �11�. Therefore, the do-
mains of v and N representabilities are in general different,
as it will be discussed below.

Equation �11� can be solved numerically for finite lattices
with different structures, boundary conditions, and band fill-

ings. In this case we expand 	
��ij�� in a complete set of
basis states 	�m� which have definite occupation numbers �i�

m

at all orbitals i� �n̂i�	�m�=�i�
m 	�m� with �i�

m =0 or 1�. The
values of �i�

m satisfy the usual conservation of the number of
electrons Ne=Ne↑+Ne↓ and of the z component of the total
spin Sz= �Ne↑−Ne↓� /2, where Ne�=�i�i�

m . For not too large
clusters, the ground state 	
0��ij�� of Eq. �11� can be deter-
mined by sparse-matrix diagonalization procedures, for ex-
ample, by using Lanczos iterative method.22 Usually,
	
0��ij�� is calculated in the subspace of minimal Sz since
this ensures that there are no a priori restrictions on the total
spin S. In addition, spin-projector operators may be used to
investigate the dependence of W��� on S.26

Interesting examples of non-v-representable �ij are found
when there is a discontinuous change in the nature of the
ground state as a function of external or interaction param-
eters. Consider, for instance, the Hubbard model on a bipar-
tite finite ring with Na=4k sites �k is a positive integer� and
sublattice energy levels �1 and �2 �see Eq. �1��. In the homo-
geneous case ���=�2−�1=0� the Fermi energy correspond-
ing to half-band filling is degenerate �n=1�. This degeneracy
is removed for arbitrary small values of U or ��. However,
the nature of the ground state is completely different for U
�0 ���=0� and ���0 �U=0�. In the first case the charge
distribution remains homogeneous for all U�0, while in the
second a CDW state sets in, with a finite amplitude �n0 even
for arbitrary small ��. As a result, the density matrices hav-
ing 0	�11−�22	�n0 and off-diagonal �12 close to the un-
correlated limit �12

0 are not pure-state v representable. Con-
sequently, the domain of v representability is concave. In
fact, for the examples to be discussed in Sec. IV it is not
simply connected since the level crossing occurs even for
U / t→ +�. Notice, however, that this is a finite-size effect
which tends to disappear as the length Na=4k of the ring
increases. For large Na the contribution of the Fermi level to
�ij and to its discontinuity becomes negligible.

In the non-v-representable region Levy’s constrained-
search minimum 	
0��ij�� is given by a linear combination
	
�=a	��+b	�� of the two ground states which level cross-
ing is at the origin of the discontinuity of �ij

gs ��� 	��=0�. The
coefficients a�0 and b=�1−a2ei� are obtained by minimiz-
ing W��� under the constraint �
	ĉi�

† ĉj�+ ĉj�
† ĉi�	
�=�ij�

+� ji�. Without loss of generality we assume that the hopping
integrals are always real so that the energy functionals de-
pends only on the sum of �ij and � ji �tij = tji�. It is easy to see
that any intermediate �ij is not pure-state v representable but
it can be derived from a ket of the form 	
�=a	��
+ i�1−a2	��. In this range the density matrix has the form
�ij =a2�ij

� + �1−a2��ij
�, where �ij

� and �ij
� are the density ma-

trices corresponding to 	�� and 	��. The interaction energy
associated to 	
� is W=a2W�+ �1−a2�W�. It necessarily
yields the minimum of Levy’s constrained search since 	
�
is one of the ground states of the Hubbard model. Any other
state representing the same �ij would have the same kinetic
energy and, therefore, an equal or higher W. This shows that
the N-representability domain is convex even if the
v-representability domain is concave. This is an important
prerequisite for the analysis of the scaling properties of W���
to be performed in Sec. V.

The functional W���, valid for all lattice structures, hy-
bridizations, and energy levels, can be simplified at the ex-
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pense of universality if the hopping integrals are short
ranged. For example, if only NN hoppings are considered,
the kinetic energy EK is independent of the density-matrix
elements between sites that are not NNs. Therefore, the con-
strained search in Eq. �6� may be restricted to the 	
��ij��
that satisfy �
��ij�	��ĉi�

† ĉj�	
��ij��=�ij only for i= j and for
NN ij. In this way the number of variables in W��� is re-
duced significantly rendering the interpretation and practical
manipulation of the functional dependence far simpler. While
this is a great advantage, it also implies that W loses its
universal character since the dependence on the NN �ij is in
general different for different lattices. In Sec. V a number of
representative exact results for W��� are compared in order
to quantify this behavior.

IV. REPRESENTABILITY OF THE DENSITY MATRIX

In the following we focus for simplicity on bipartite lat-
tices choosing �12�0 and tij =−t	0 for NN ij. Nonbipartite
lattices can be treated analogously by considering positive
and negative domains of �12 separately, positive �negative�
values of �12 being relevant for negative �positive� hopping
integrals. As shown in Ref. 17 for homogeneous density dis-
tributions, nonbipartite lattices show scaling properties of
W��� that are similar to the bipartite case. In Fig. 1 the NN
density matrix element �12 of the ground state of the inho-

mogeneous Hubbard model is shown as a function of the
electron density �11 at one of the sublattices. The results
refer to rings having Na=12 and 14 sites and a band filling
n=Ne /Na=1. They were obtained from Lanczos exact diago-
nalizations for representative values of the Coulomb repul-
sion strength U / t�0 by varying systematically the differ-
ence ��=�1−�2�0 between the energy levels of the
sublattices. The curves are shown only for 0��11�1 since
the results are unchanged by replacing �11 by �22=2−�11.
They display the correlation between diagonal and off-
diagonal elements of the density matrices �ij, as derived
from the ground state of the model for different values of the
parameters that define the system �i.e., the energy level dif-
ference �� and the NN hopping t�. These density matrices
are referred to as pure-state interacting v representable or
simply v representable by analogy with the DFT of the in-
homogeneous electron gas. In the continuum theory the elec-
tron densities ��r�� derived from exact ground states are
called interacting v representable since they stay in one-to-
one correspondence with an external potential vext�r��.1–3

While the v-representable domain contains all the ground-
state �ij

gs, it is also important to investigate the properties of
the more general N-representable �ij, which constitute the
domain of definition of Levy’s functional W���.

For each �11 or charge transfer �n=�22−�11, the upper
bound �12

0 for the NN �12 corresponds to the largest possible
value of the kinetic energy, which is achieved by the uncor-
related ground state for the given �n. Since the underlying
electronic state is a single Slater determinant, the interaction
energy is given by the Hartree-Fock value W0=W��0�
=UNa��11

2 +�22
2 � /8, except in cases with unusual degenera-

cies in the single-particle spectrum �e.g., Na=Ne=4 and �n
=0�. The uncorrelated �12

0 is largest for an homogeneous den-
sity distribution ��n=0� and decreases monotonically as the
charge transfer increases. It vanishes in the limit where only
one sublattice is occupied �see Fig. 1�. This can be under-
stood by recalling that in an uncorrelated state an increase in
�n is the result of an increasing difference �� in the energy
levels of the sublattices, which reduces in its turn the possi-
bility for the electrons to delocalize. In the limit of complete
charge transfer ��11→0� no charge fluctuations at all are
possible.

For �12	�12
0 and a given �n, the dimension of the sub-

space of accessible many-body states is larger and, therefore,
the electrons can reduce the optimum value of the interaction
W for a fixed �ij by reducing the number of double occupa-
tions �U�0�. The minimum value of the interaction energy
per site is W�=U�1−�11� /2 for n=1 and �11�1. We shall
denote by �12

� the largest possible value of �12 compatible
with the minimum number of double occupations W� /U. �12

�

defines the lower bound for the v representable �ij and cor-
responds to the ground state of the model for U→ +�
�W��12

� �=W�; see Fig. 1�. Smaller values of �12 are still pure-
state N representable. To show this one may consider a linear
combination of two states having the same �11 and opposite
�12

� . One of them is the ground state yielding �12
� for negative

tij and the other for positive tij �U→ +��. It is easy to see
that these states have all the same minimal interaction energy
W�. Therefore W is independent of �12 and equal to W� for
	�12	��12

� . Although they are pure-state representable, these

FIG. 1. �Color online� Correlation between the off-diagonal
nearest-neighbor density-matrix element �12 and the electron den-
sity �11 at one of the sublattices of the 1D Hubbard model: �a� Na

=12 sites and �b� Na=14 sites for half-band filling n= ��11

+�22� /2=1. Different Coulomb repulsions U / t�0 are considered
as indicated in the inset. The dashed lines �red� indicate the �ij that
are not pure-state v representable. Pure-state N representability
holds for all 0��12��12

0 , where �12
0 refers to the U=0 upper

bound.
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�ij can never match a ground state since there are states
having the same �n and W but larger �12.

In the absence of charge transfer ��11=�22=1� the mini-
mum W�=0 can only be achieved by any of the 2a

N fully
localized states for which �12

� =0. This corresponds to the
well-known Heisenberg limit of the homogeneous Hubbard
model. However, as charge transfer increases it is possible to
delocalize part of the electrons, even in the limit of strong
correlations �i.e., W=W��. Therefore, �12

� �0 for 0	�11
	1. Although the details of the strongly correlated ground
state are quite complex, one can easily estimate that �12

�

should be larger than the �12 of a Slater determinant having
one localized �e.g., up� electron in the sites of the sublattice
2 ��22�1�, while the remaining �e.g., down� electrons oc-
cupy delocalized states following an average occupation
�22−1 on sublattice 2 and �11 on sublattice 1. Consequently,
�12

� should be largest for intermediate values of the number
of delocalized electrons per site. This corresponds roughly to
a half-filled delocalized subband ��11=�22−1�1 /2 and
�� /U�1�. The resulting �12

� presents, therefore, a maximum
as a function of �11, vanishing only for �n=1 and �n=0,
where the number of delocalized electrons or holes is zero
�see Fig. 1�. Notice that the actual maximum of �12

� is found
for �11	1 /2.

Figure 1�a� shows an interesting example of a discon-
nected domain of v representability, which is the result of the
crossing between the two lowest S=0 levels. One of them
favors a strong CDW state and is the ground state for large
�n, while the other yields a rather uniform density distribu-
tion and dominates for �11 close to 1. The ground-state den-
sity matrix �ij

gs is discontinuous at the level crossing, as in-
dicated by the dashed lines in Fig. 1�a�. For U=0 the
discontinuity appears for a arbitrary small �n. As U�0 in-
creases, �12

gs decreases and the transition from an homoge-
neous to an inhomogeneous density distribution shifts to a
finite increasing ��. In contrast, the discontinuity in �11 re-
mains approximately constant even for U→ +� �see Fig.
1�a��. This leads to a whole range of �ij that cannot be at-
tained by the ground state of the Hubbard model. Therefore,
the domain of pure-state v representability is not simply con-
nected. In this intermediate region, �ij can be represented by
a linear combination of the two orthogonal degenerate
ground states at the origin of the level crossing. As discussed
in Sec. II, Levy’s constrained-search functional W corre-
sponds here to the interpolation of the interaction energies in
the two degenerate states as given by the straight dashed
lines in Fig. 1�a�.

V. SCALING PROPERTIES OF INTERACTION-ENERGY
FUNCTIONAL

In this section we present and discuss exact results for W
in the 1D Hubbard rings that were obtained from Lanczos
diagonalizations by varying systematically �ij, the band fill-
ing n, and the number of sites Na. In Fig. 2 W is shown as a
function of �12 for representative values of �n=�22−�11.
Despite the strong dependence of W on �n there are several
important qualitative properties shared by all the curves:

�i� As already discussed, the domain of N representability
of �12 is bounded by the bond order �12

0 in the uncorrelated

limit. �12
0 decreases monotonously as �n increases vanishing

for �n=2. This is an important contribution to the �n depen-
dence of W, which reflects the interplay between charge
transfer and electron delocalization.

�ii� In the delocalized limit, W��12
0 ,�n�=W0=EHF for all

�n since the electronic state yielding the largest �12 is a
single Slater determinant. Moreover, one observes that
�W /��12 diverges at �12=�12

0 . This is a necessary condition
in order that the ground-state density matrix satisfies �12

gs

	�12
0 for arbitrary small U�0, as expected from perturba-

tion theory.
�iii� Starting from �12

0 , W decreases with decreasing �12,
reaching its lowest possible value W�=UNa��22−1� /2 for
�12=�12

� �W�=UNa�n /4 for n=1�. The decrease in W with
decreasing �12 means that the reduction in the Coulomb en-
ergy due to correlations is done at the expense of kinetic
energy or electron delocalization. Reducing �12 beyond �12

�

cannot lead to any further reduction in W for the given �n.
�iv� The strongly correlated �12

� is, in general, finite show-
ing a nonmonotonous dependence on �n. It vanishes only for
�n=0, where the electrons are localized evenly at all sites
keeping just their spin degree of freedom and for �n=2,
where all the electrons form localized pairs on one sublattice.
In the latter case both �12

� and �12
0 vanish.

�v� In the limit of small �12−�12
� �0, one observes that

W�U��12−�12
� �2. Therefore, for U / t�1, ��12

gs −�12
� �� t /U

FIG. 2. �Color online� Interaction energy W of the Hubbard
model on 1D rings as a function of NN density-matrix element �12:
�a� Na=12 and �b� Na=14 sites at half-band filling n=1. The differ-
ent charge transfers �n=�22−�11 are indicated by the numbers la-
beling the curves. The dashed curve �blue� shows the Hartree-Fock
upper bound EHF=W0=UNa�n2+ ��n /2�2� /4. The dotted curve
�red� corresponds to the strongly correlated limit, where �12=�12

�

and W=W�=UNa�n /4 for n=1. Notice that W is constant for 0
��12��12

� .
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and Egs−W�� t2 /U, results expected from perturbation
theory and which correspond to the Heisenberg or t-J limit of
the homogeneous Hubbard model.7

In order to compare the functional dependence of W for
different �n and to analyze its scaling behavior we focus on
the v representable domain �12

� ��12��12
0 , where W is not

trivially constant. To this aim it is useful to bring the do-
mains of representability for different Na to a common range
and to scale W with respect to the Hartree-Fock and strongly
correlated values. We, therefore, consider �W−W�� / �W0

−W�� as a function of g12= ��12−�12
� � / ��12

0 −�12
� � as dis-

played in Fig. 3 �W0=EHF�. In this form the results for dif-
ferent Na appear as remarkably similar, showing that the
largest part of the dependence of W on �12 and �n comes
from the domain of representability of �ij and the limiting

values for weak and strong correlations. An analogous scal-
ing behavior has been found in previous numerical studies of
W for an homogeneous charge distribution.17 In this case one
also observes that W�g12� depends weakly on system size Na
provided it is measured in units of the Hartree-Fock energy
EHF and if �12 is scaled within the relevant domain of repre-
sentability ��12

� ,�12
0 �. In the present context, Fig. 3 implies

that the change in W associated to a given change in the
degree of delocalization g12 can be regarded as nearly inde-
pendent of system size.

The very good scalability of W as a function of g12 for
different system sizes is not obvious. In fact, if one considers
W�g12� for different charge transfers �n, one observes much
more significant deviations. This is demonstrated in Fig. 4
where the results for a 1D ring with Na=14 sites are com-
pared for different �n. Qualitatively, the dependence of W on
the degree of delocalization g12 is similar for different �n.
Notice, for instance, the behavior for weak and strong corre-
lations �g12�0 or 1� and the overall shape in the crossover
region. This shows that the scaling hypothesis works satis-
factorily even for different �n. However, the quantitative
differences between the scaled W for various �n are more
significant than those found for different sizes �see Figs. 3
and 4�. This is actually not very surprising since the nature of
the electronic correlations is expected to evolve as we move
from purely metallic to strongly ionic-like bonds. It is, there-
fore, important to investigate systematically the functional
dependence of W for different �n in order to elucidate its
scaling behavior and evaluate the possibilities of transferring
it from simple to complex many-body problems.

In Fig. 5 the band-filling dependence of W in a Na=10 site
Hubbard ring is shown for Ne�Na and �12�0. The same
functional dependence is obtained for Ne�Na or �12	0 due
to electron-hole symmetry and the bipartite symmetry of the
lattice �W��12,�n�=W���12, ��n��. While W��12� depends
strongly on n and �n, several qualitative features are com-
mon to all the curves:

�i� As in the half-filled band case, the domain of v repre-
sentability of �12 is limited by the bond orders in the uncor-
related and strongly correlated limits: �12

0 ��12��12
� , where

�12
0 ��12

� � corresponds to the ground state of the model for
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FIG. 3. �Color online� Scaled interaction energy W of the 1D
Hubbard model as a function of the degree of electron delocaliza-
tion g12= ��12−�12

� � / ��12
0 −�12

� �. W0=EHF and �12
0 refer to the uncor-

related limit �U=0�, while W� and �12
� refer to the strongly corre-

lated limit �U / t→ +��. Results are given for band filling n=1, all
even numbers of sites Na=2–14, and different charge transfers �n.
Open circles �red� correspond to Na=2 and crosses �blue� corre-
spond to Na=4. The other sizes are very difficult to tell apart.
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U=0 �U→ +��. Notice that �12
0 increases monotonously

with Ne as the single-particle band is filled up. In contrast the
behavior of �12

� is more complex, showing either a monoto-
nous increase with n for �n�1 or nonmonotonous band-
filling dependence for �n	1 �see Fig. 5�. As already dis-
cussed, the dependences of �12

0 and �12
� on n and �n are of

central importance to the band-filling dependence of W.
�ii� In the weakly correlated limit, W��12

0 ,�n�=W0 is
given by the Hartree-Fock energy EHF /Na=U�n2

+�n2 /4� /2 since the underlying state is a single Slater
determinant.27 Moreover, the divergence of �EC /��12 for
�12=�12

0 shows that �12
gs 	�12

0 for arbitrary small U�0, as
expected from perturbation theory.

�iii� Starting from �12=�12
0 , W decreases monotonously

with decreasing �12, reaching its lowest possible value W�

=UNa max�0,n−1+�n /2� /2 for �12=�12
� . As already dis-

cussed for n=1, �12
� defines the lower bound of the domain

of v representability. Smaller �12 are still pure-state repre-

sentable but W=W� is constant in this range. For the sake of
clarity, the values of �12

� are indicated by vertical dashed
lines. Notice that W� vanishes for small electron density,
provided that the charge transfer is not very strong �i.e., n
+�n /2=�22�1�. The decrease in W with decreasing �12 il-
lustrates, once more, how the correlation-induced reduction
in the Coulomb energy occurs at the expense of kinetic en-
ergy or electron delocalization.

�iv� �12
� always represents the largest NN bond order that

can be constructed under the constraint of minimal Coulomb
repulsion energy. As in the uncorrelated case, the density-
matrix element �12

� vanishes when the occupation of one of
the sublattices is either 0 or 2 �i.e., �11=0 under the assump-
tion �11	�22 and n�1�. However, in the strongly correlated
limit, �12

� also vanishes when the occupation of one of the
sublattices is strictly 1 since this leaves no possibility for the
electrons or holes to delocalize without involving charge
fluctuations �bipartite lattice�. This is of course only possible
for n�1 /2. One, therefore, finds, assuming �11	�22, that
�12

� =0 for �22=n+�n /2=1.
�v� For small n or �n, where both �11 and �22 are smaller

than 1, it is possible to approximate the strongly correlated
state �minimal W� by a fully polarized Nagaoka state as in
the homogeneous case.18 In this case �12

� is largest for �n
=0, decreasing monotonously with increasing �n, and van-
ishing for �11=0 ��n=n� or �22=1 ��n=2�1−n�� whichever
comes first. This explains the nonmonotonous dependence of
�12

� as a function of n with a maximum for n=1 /2 for �n
	1 �i.e., nearly half-filled fully polarized spin band�.

�vi� In the other regime, for �n�1 �1 /2	n	1 and �22
= �n+�n /2��1� one can obtain a lower bound for �12

� by
assuming localized electrons in sublattice 2, for instance,
with spin up, so that �12 is given by the remaining Ne
−Na /2 down electrons. While this ansatz neglects spin fluc-
tuations and is, therefore, rather poor quantitatively, it ex-
plains the monotonous increase in �12

� with increasing n for
fixed �n�1 as the down band is filled up �see Fig. 5�. The
approximation remains qualitatively correct provided that
�22= �n+�n /2��1. In particular it explains that �12

� vanishes
for �11=0 and �22=1 and that, for a given n, it shows a local
maximum for �n not far from 1 �2�1−n���n�2n�, i.e., for
�11��22−1, when the delocalized electrons are evenly dis-
tributed among the two sublattices �see Fig. 5, for example,
for Ne=8�.

The results for different band fillings are compared in Fig.
6 by considering the scaled interaction energy �W
−W�� / �W0−W�� as a function of g12= ��12−�12

� � / ��12
0 −�12

� �.
Once the relevant v-representable domains are brought to a
common range, one observes a remarkably similar behavior
for all band fillings. Figure 6 shows that the largest part of
the band-filling dependence of W in the inhomogeneous
Hubbard model comes from its limiting values W0=EHF
=UNa�n2+�n2 /4� /2 and W�=UNa max�0,n−1+�n /2� /2
and on the corresponding bounds �12

0 and �12
� of the domain

of representability. Similar conclusions are inferred from cal-
culations for other sizes and lattice structures. Notice that the
strongest dependence of the scaled interaction on n is found
for a nearly homogeneous charge density �small �n� and for
intermediate values of g12. As we approach the strongly cor-
related limit �g12�0.4� the dependence of n is relatively
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weak even for �n�0. One concludes that a properly scaled
interaction energy follows approximately a universal behav-
ior.

VI. SUMMARY AND OUTLOOK

A density-functional approach to lattice-fermion models
has been applied to the inhomogeneous Hubbard model. In
the framework of lattice density-functional theory �LDFT�
the basic variable is the single-particle density matrix �ij and

the central functional is the interaction energy W���. The
challenge is, therefore, to determine W��� and to provide
with useful accurate approximations for it. In this paper we
have presented a systematic study of the functional depen-
dence of W of the Hubbard model as a function the NN
density-matrix element �12 and charge transfer �n=�22
−�11. Rigorous numerical results have been obtained from
exact Lanczos diagonalizations on finite supercells with pe-
riodic boundary conditions. The functional dependence of W
has been analyzed by varying the degree of charge transfer
and electron delocalization between the sublattices, as well
as the number of sites Na and the band filling n=Ne /Na. It
has been shown that W can be appropriately scaled as a
function of �n and g12= ��12−�12

� � / ��12
0 −�12

� �, where �12
0

��12
� � refers to the limit of weak �strong� electronic correla-

tions. In other words, the change in W associated with a
given change in the degree of NN charge transfer and elec-
tron delocalization can be regarded as nearly independent of
the system under study.

The observed pseudouniversal behavior of the scaled in-
teraction energy functional provides a unified description of
correlations from weak- to strong-coupling regimes. More-
over, it encourages transferring the results from supercells to
infinite systems with different lattice geometries. In this way
the scope of LDFT has been extended to inhomogeneous
charge-density distributions. A basis for applications to more
realistic lattice models in low symmetry configurations is
thereby provided. Among the interesting perspectives one
can mention multileg ladders including the crossover to the
two-dimensional square lattice, metal clusters, and disor-
dered systems. Furthermore, it would be relevant to apply the
present scaling approximation to other types of interactions.
For instance, in the attractive Hubbard model the nature of
the electronic correlations and the resulting properties of the
functional W��� are fundamentally different. The same holds
for the conditions for v representability of �ij, which depend
on the explicit form of the Hamiltonian, in contrast to the
notion of N representability which involves the whole Hil-
bert space of the system and only depends on the number of
sites and electrons. For U	0, W corresponds to the maxi-
mum number of double occupations for a given �ij. There-
fore, new interesting effects are expected, particularly con-
cerning the interplay between homogeneous and
inhomogeneous density distributions.
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